澳门赌场

图片

加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致澳门赌场建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——澳门赌场办院方针

首页 > 科研进展

上海硅酸盐所在氟化铁锂电池正极的结构设计和规模化制备方面取得系列进展

2024-05-14 上海硅酸盐研究所
【字体:

语音播报

基于离子脱嵌反应的传统锂离子电池由于单电子转移产生的比容量有限,其能量密度已接近理论极限,难以满足未来长续航和大规模储能体系的性能需求。三氟化铁正极(FeF3)基于三电子转移的转换反应具备712 mAh g-1的高理论比容量,将其匹配锂金属负极而构筑的Li-FeF3电池的理论能量密度可达850 Wh kg-1和1500 Wh L-1。然而,商业ReO3FeF3正极的本征电子/离子传输性能不佳,涉及Fe-F强离子键断裂/重构的转换反应动力学迟缓,导致电池的电化学性能迅速衰退。此外,目前氟化铁的合成方法通常采用HFNF3等腐蚀性气体或昂贵的离子液体作为氟源,缺乏可规模化制备的工艺技术。

针对上述问题,澳门赌场上海硅酸盐研究所研究员李驰麟团队提出了氟化碳剪切氟化和深度共熔溶剂氟化的新型制备方法,利用温和的反应环境和可控的氟离子释放,显著提升了制备过程的安全性和可控性;协同正极异质结构和多孔形貌设计、电解液溶剂化结构调控等策略的运用,构筑了高容量、长循环稳定的Li-FeF3电池

研究利用六水合氯化铁(FeCl3.6H2O)与氟化碳(CFx)分别作为反应的铁源和氟源,通过有机胺(苄胺)与CFx之间质子耦合电子转移的加氢脱氟反应,在较低温度下可形成(NH4)3FeF6中间体,再通过后续热处理的除铵脱气过程,即可制备得到具有多孔立方笼状形貌的六方钨青铜结构氟化铁(HTB-FeF3)。在此合成体系中,FeCl3.6H2OCFx均扮演了“双重角色”:FeCl3.6H2O作为铁源的同时起到潜在的催化作用,增强了苄胺对CFx剪切脱氟的反应活性;CFx通过脱氟反应提供氟源之后,便可复合氟化铁颗粒为其原位构筑导电网络,避免了额外导电剂的引入。最终产物HTB-FeF3所具备的多孔立方笼状形貌和一维开放隧道结构,为氟化铁由表及里的离子传输提供了快速的多级通道,增强了电极反应动力学。为进一步缓解活性物质的溶损,该团队开发了局部高浓度电解液,其设计策略遵循对正负极界面双重保护的原则。研究人员将双三氟甲烷磺酰亚胺锂(LiTFSI)溶解于二乙二醇二甲醚(G2)溶剂,并采用弱溶剂化能力的1H1H5H-八氟戊基-1122-四氟乙基醚(OFE)作为稀释剂,继而形成局部高浓度环境,使得电解液中的Li+通过与TFSI-共用溶剂分子而形成溶剂化鞘层。OFE稀释剂降低了电解液的粘度,获得了高达0.74的锂离子迁移数,拓宽氧化稳定电位至5 V。研究额外引入二氟二草酸硼酸锂作为成膜添加剂,通过优先的氧化/还原分解在正极/负极侧构筑稳健的界面膜,有效抑制了FeF3正极侧的活性物质溶出及其与锂负极之间的串扰效应。结合正极氟化碳剪切氟化合成方法和电解液溶剂化结构调控策略的运用,Li-FeF3电池的可逆容量在130次循环后依然保持在335 mAh g-1。该进展通过定制合成路径、活性物质织构和电解液配方的协同效应为高性能转换型碳-氟化物正极的研制提供了有效方案。相关成果发表在《材料视野》(Materials Horizons上。

为实现高性能氟化铁正极材料的规模化可控制备,该团队提出基于安全廉价且具有类离子液体特性的深度共熔溶剂的新型合成方法。九水合硝酸铁和二甲基砜通过路易斯酸碱作用,在60 ℃下即可形成透明澄清液体作为反应的铁源和溶剂。研究采用NH4HF2作为反应氟源,温和的反应环境和氟离子的缓慢释放提升了反应过程的可控性与安全性。此外,额外引入六水合硝酸钴,溶剂化的钴离子可进一步调控氟化铁产物的形貌。由于氟化铁和氟化钴溶解性的差异,钴离子不会参与氟化物沉淀,可通过回收进行循环利用。最终形成的氟化铁产物具备三维多孔砖块状形貌,有效增加了电极与电解液之间的接触面积和电化学反应的活性位点,增强了电极反应的动力学性能。Li-FeF3电池表现出宽温域高效运行和优异的倍率性能。此外,在薄锂负极和贫电解液条件下,Li-FeF3软包电池的可逆比容量仍可超过450 mAh g-1。该工作为高比能氟基正极的潜在规模化商用提供了合成工艺支撑,起到了指导作用。相关成果发表在《能源化学》(Journal of Energy Chemistry上。

针对氟化铁正极在规模化合成条件下的结构设计需求,该团队基于氯化胆碱和乙二醇以氢键相互作用形成的深度共熔溶剂,引入钴离子作为铁源原位氧化的辅助剂,制备得到了FeF2/FeF3氟化铁异质结。FeF2保持阴离子骨架的拓扑转换机制,为周围FeF3的转换反应起到缓冲和限域作用。由此形成的棋盘状结构LiF/Fe晶域具备均质且紧致贴合的分布状态,保证了内置导电网络之间的互连畅通并加快了界面质量输运。因此,FeF2FeF3的异质结构能够促进和稳定界面电荷转移和拓扑转换反应。结合FeF2窄带隙和稳定转换反应与FeF3高理论容量和热力学势的特点,研究实现了氟化铁正极的循环稳定和可逆容量的协同提升。FeF2/FeF3异质结正极在前数十圈循环的放电比容量高达520 mAh/g,在200次循环后的容量仍可保持在305 mAh/g;即使在1000 mA/g的高电流密度下,仍可释放328 mAh/g的比容量并保持典型的两阶段反应平台。规模化合成工艺与氟化物异质结构设计相结合的策略为高能量密度金属氟化物电池的发展开辟了新途径。相关成果发表在《先进功能材料》(Advanced Functional Materials)上

研究工作得到国家自然科学基金委员会和上海市科学技术委员会的支持。

论文链接:123

打印 责任编辑:江澄

© 1996 - 澳门赌场 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 澳门赌场 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 澳门赌场 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn